An individual-based model for biofilm formation at liquid surfaces.

نویسندگان

  • Maxime Ardré
  • Hervé Henry
  • Carine Douarche
  • Mathis Plapp
چکیده

The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofilm Formation by the Hexavalent Chromium Removing Strain Streptococcus salivarius: in Vitro Approach on Abiotic Surfaces

In this study, a strain of lactic acid bacteria Streptococcus salivarius was studied for its capacity to remove hexavalent chromium (Cr (VI)) from a liquid medium and to form biofilm. Both properties are useful for using the strain in bioremediation of metal-contaminated effluents. For biofilm formation capacity, three methods were used: the tube method (TM), the Congo red agar method (CRA) and...

متن کامل

Biofilm Formation by the Hexavalent Chromium Removing Strain Streptococcus salivarius: in Vitro Approach on Abiotic Surfaces

In this study, a strain of lactic acid bacteria Streptococcus salivarius was studied for its capacity to remove hexavalent chromium (Cr (VI)) from a liquid medium and to form biofilm. Both properties are useful for using the strain in bioremediation of metal-contaminated effluents. For biofilm formation capacity, three methods were used: the tube method (TM), the Congo red agar method (CRA) and...

متن کامل

Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa

Objective(s): Pseudomonas aeruginosa is a nosocomial pathogen resistant to most antimicrobial treatments. Furthermore, it persists in adverse environments thereby forming biofilms on various surfaces. Researchers have therefore focused on antibiofilm strategies using nanoparticles due to their unique physicochemical properties. Superparamagnetic iron oxide nanoparticles (SIONPs) have recently s...

متن کامل

Effect of Benzalkonium Chloride on Biofilm of Bacteria Causing Nosocomial Infectionstions

ABSTRACT          Background and Objective: Biofilms are community of bacteria that attach to inanimate surfaces or living tissues via production of extracellular polymers and exopolysaccharide matrix. Microbial biofilms on various surfaces of the hospital environment are considered as a reservoir of infection spread. The present study aimed to evalu...

متن کامل

Biochemical Detection of N-Acyl Homoserine Lactone from Biofilm-Forming Uropathogenic Escherichia coli Isolated from Urinary Tract Infection Samples

Background: N-Acyl homoserine lactone (AHL) is found to be the main component of quorum sensing (QS) in Gram-negative bacteria and plays an important role in biofilm formation. Little information is available regarding the role of AHL in biofilm formation in Escherichia coli (E. coli). The purpose of this investigation was to biochemically detect and characterize AHL activity in biofilm-forming...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical biology

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2015